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Appendix A: Filter Specifications

Figures 4 and 5 show the various system filters. The function of each
filter is described in words below. Figures 28 and 29 show the general
format for specifying passband, stopband, transition band, and cut-off
frequency; the specifications for each filter are in the accompanying Table
1.

Encoder Filters

HZF#E1

HZF#E2

HZF#E3

HZF#E4

HZF#E5

HZF#E6

HZF#E7

HZF#E8

Initial bandlimiting filter for center panel I (IC).

Initial bandlimiting filter for center panel Q (QC).

Bandsplit filter for center panel Y lows (YeL). This filter determines how
much center panelluma will contain full V-T resolution. For a flat center
panelluma response, this ruter should be the complement of HZF #ES.

Bandsplit filter for side panel Y lows (YSL). It determines how much side
panelluma will contain full V-T resolution. Its cut-off frequency must be
low enough so that the signal, after time compression, will pass undistoned
through the channel filter. For a flat side panel luma response, the
convolution of HZF #E4 and HZF 109 should be the complement of the
convolution of HZF IE7 and HZF #010.

Bandsplir mter for center panel Y highs (YCH). This filter determines how
much center panelluma will contain half V-T resolution (be intraframe
averaged). For a flat center panel luma response, this ftlter should be the
complement of HZF #E3.

Bandlimiting filter for side panellum.a. without YHH (Component 3). For
spectrum efficiency, this filter should be sharp. Any ringing will be
canceled when YHH is added back in. Bandlimiting for center panelluma
is performed by the channel, which is a very sharp fllter. This gives the
compatible set a sJwp main picture. To yield a flat side panel response, this
filter should be the complement of HZF #E10.

Bandsplit filter for side panel Y highs (YSH). It determines how much side
panelluma will be intraframe averaged, and it also affects crosstalk between
YSHandQS.

Initial bandlimiting filter for side panel Q (QS). It affects crosstalk between
QS and YSH.

Initial bandlimiting filter for side panel I (IS). This fllter's cutoff frequency
is the same as that of QS, or 0.625 MHz.

Advanced Compatible Television
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HZF #EIO Bandsplit fllter for widescreen Y high-highs (YHH, or Component 3). This
filter determines the lower end of the YHH band; HZF #E14 detennines the
upper end.

HZF #EII This filter determines the lower limit of the band of luma frequencies
preflltered by Qbert.

HZF #E12 This filter suppresses any harmonics and repeat spectra that may be present
after noise reduction and time expansion of the combined YSHlQS signal
(yQS). It prevents crosstalk from modulated YQS into center panel lurna.

HZF #El3 Inverse Nyquist-slope mter for modulated IS. The gain of this filter should
be exactly 0..5 at 3..58 MHz

HZF #El4 This ruter determines the upper band edge for YHH. The nominal upper
cutoff frequency for YHH is 3..58 MHz higher than the cutoff frequency of
this filter.

HZF #EI.5 This filter suppresses any repeat spectra that may be present after time
expansion of YHH. It limits crosstalk from YHH into the AerY signal.

HZF #El6 This filter shapes the upper band edge of the YSD signal. It should be the
complement of HZF #ES.

HZF #El7 This filter shapes the lower band edge of the YSD signal. It should be the
complement of HZF #E4.

Decoder Filters

HZF#Dl

HZF#D2

HZF#D3

HZF#D4

HZF#DS

HZF#D6

HZF#D7

Highpass filter for modulated Component 2 plus center panel of Component
1. The complement is generated by a subtracter module. It determines the
range of center panelluma frequencies that will be intraframe averaged.

This ruter determines the lower limit of the band of luma and modulated
chroma frequencies processed by Qbert decoding.

Demodulation filter for recovered Ie (before raster mapping).

Demodulation ruter for recovered QC (before raster mapping).

Bandshaping filter for center panel luma. This filter yields the
complementary slope for YHH to yield a flat response.

Nyquist-slope filter for modulated YQS. The convolution of this filter with
HZF #Et3 should be exactly double sideband around 3.58 MHz. The gain
of this filter should be exactly 0..5 at 3..58 MHz

Demodulation filter for recovered YQS (before raster mapping).
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HZF *08 Demodulation filter for recovered IS (before raster mapping). To prevent
quadrature crosstalk from YQS, the cutoff frequency of this filter must not
be larger than about 1 MHz.

HZF #09 Final bandshaping fIlter for YSL

HZF *010 Bandshaping and separation fIlter for YSH. It affects flattless of side panel
luma response and crosstalk from QS into YSH.

HZF #011 Separation fIlter for QS. It affects crosstalk from YSH into QS.

HZF #012 Fmal bandlimit filter for I. Tends to smooth out any seam artifacts.

HZF #013 Fmal bandlimit filter for Q. Tends to smooth out any seam artifacts.

HZF #014 Lower sideband reject for Ylffi. Should be flat above 4 MHz to insure
correct bandshape for frequency seaming.

HZF #OIS Initial bandlimiting ruter for Component 3. Rejects any remaining
Component 1.

HZF #016 Bandsplit filter to separate IS from YSO.

HZF #017 Bandsplit filter to separate YSO from IS.

HZF *018 Bandsplit filter for widescreen luma. Thius separates the full V·T lows
from the half V-T (intraframe averaged) highs. This separation is needed
because the highs and lows are processed separately in the progressive scan
conveners.
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Table 1: Horizontal Filter Specifications

FUter' Tvoe Ife (MHz) ~f(MHz: do as IOCGain
Encoder

El lowoass 1.50 0.30 0.05 0.05 1.00
E2 lowoass 0.62 0.20 O.OS O.OS 1.00
E3 lownass 2.00 0.30 0.05 0.05 1.00
E4 lownass 0.98 0.20 0.05 O.OS 1.00
ES hill:hoass 2.00 0.30 0.05 0.05 0.00
E6 lowoass 5.00 0.30 0.05 0.05 1.00
E7 highoass 0.85 0.20 0.05 0.05 0.00
E8 loWl'8SS 0.62 0.20 0.05 O.OS 1.00

E9=E8 lowpass 0.62 0.20 0.05 0.05 1.00
EI0 hill:hoass 5.00 0.30 O.OS 0.05 0.00
Ell lowoass 3.00 0.30 0.05 0.05 1.00
E12 lowpass 2.00 0.30 O.OS O.OS 1.00

E13 highoass 3.58 O.SO O.OS 0.01 0.00
E14 lowpass 2.80 0.30 0.05 0.05 2.00
E1S lownass 1.50 0.30 O.OS O.OS 4.00

EI6=E3 lowoass 2.00 0.30 0.05 O.OS 1.00
E17 hill:hoass 0.85 0.20 O.OS O.OS 0.00

Decoder
01 highoass 1.80 0.30 0.05 0.05 0.00
02 lowoass 2.50 0.30 O.OS O.OS 1.00
03 lowoass 2.00 0.30 O.OS 0.05 2.00
D4 lownass 0.62 0.40 O.OS 0.05 2.00

OS=E6 IOWDlLSS 5.00 0.30 0.05 0.05 1.00
D6 IOWDISS 3.58 0.50 0.05 0.05 1.00
07 lowoass 2.00 0.30 0.05 0.05 2.38
os Jowpass 0.62 0.30 0.05 0.05 2.86

D9=E4 loWI'US 0.98 0.20 0.05 0.05 1.00
010==E7 hiooass 0.85 0.20 0.05 0.05 0.00

011 loWDISS 0.62 0.20 0.05 0.05 1.60
012 loWDISS 1.50 0.70 0.05 0.05 1.00
013 1.00 0.32 0.05 0.05 1.00
01'- himoas 4.30 0.40 0.05 0.05 0.00

0IS=E1S loWDISS 1.50 0.30 0.05 0.05 4.00
016-ES loWDISS 0.62 0.20 0.05 0.05 1.00
017=£1 hiahoass 0.85 0.20 0.05 0.05 0.00
018=E3 lownass 2.00 0.30 0.05 0.05 1.00
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DESCRIPTION OF THE
DIGITAL AUDIO SYSTEM FOR ACTV

1. Introduction

It was stated in previous descriptions of Advanced Compatible Television
systems [1] that digital audio will be transmitted as a data carrier in the
lower VSB portion of the RF spectrum, the center frequency of which is
about 1.1 MHz from the picture carrier frequency. Figs. 1 and 2 show the
principles of such a data transmission.

Exceptionally good quality digital audio compression methods are
beginning to be available, requiring 256 KBPS data rate for a stereo
channel (two mono channels). The ACTV system will adopt an audio
system at this data rate. The bandwidth of the data carrier, after the
inclusion of Forward Error Correction (FEC) will be no more than 220 KHz.

The Motion Picture Engineering Group (MPEG) of the International
Standards Organization (ISO) has classified digital audio compression
methods into four categories (clusters), in the context of selecting a
standard for a variety of applications, including digital over-the-air
broadcast. These are:

1. Transform Coding with Overlapping blocks (also referred to as
Transform Coding with Time Domain Alias Cancellation)

2. Subband Coding with less than 8 subbands

3. Subband Coding with more than 8 subbands

4. Transform Coding with Nonoverlapping Blocks

The Transform Coding can potentially deliver the best quality audio. This
is because the Transform method has the best ability to match the critical
band structure of the human ear. Within such methods, coding with
overlapping blocks and time domain alias cancellation has the potential of
giving better reconstructability and frequency response. Such a method is
incorporated in a compression method referred to as ASPEC (Adaptive
Spectro-Perceptual Entropy Coding). This system is being jointly
developed by the following organizations:
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American Telephone and Telegraph, Murray Hill, NJ, USA
CNET (France Telecom), Rennes, France
Fraunhofer Gesellschaft, Erlangen, West Germany
Deutsche Thomson-Brandt GmbH, Hannover, West Germany.

In the following sections principles of the ASPEC compression system and
methods of over-the-air delivery will be described.

The hardware to be provided to the A7TC will consist of the ASPEC system,
which is predicated under the assumption that it will be the chosen
standard by the MPEG. In the event that one of the other systems (at the
data rate of 256 KBPS) will be chosen by the MPEG, consideration will be
given to making that as the ACTV digital audio standard. From the
transmission point of view all well designed 256 KBPS audio systems will
have essentially the same quality attributes, Le., they will exhibit high
audio quality at a bit error rate of better than 10-4 , and will begin to fail
at an error rate of about 10-3 . The. data modulation will be QPSK,
irrespective of which standard is chosen, and will occupy a bandwidth of
about 220 KHz.

2. Critical Bands of the Human Ear

The fundamental premise of the compression schemes listed in the above
section is that complex audio signals, which require the standards such as
Compact Disk, contain at any given time, much information that the human
ear cannot hear. The characteristics of the human ear are known almost
entirely in terms of the frequency domain. Thus, it is in the frequency
domain that parts of the audio signal which can either be discarded
altogether or transmitted less precisely, with psychoacoustically benign
effect, can be identified.

The characteristics of the human ear on which the above compression
schemes depend is the Masked Threshold of Hearing. If there are two
signals, one strong and the other weak, simultaneously present, the weak
signal is inaudible to the ear if the sound pressure of the weak signal is
below the masked threshold of hearing. This threshold power depends on
the spectra and power of the strong signal. In particular, if the weak
signal is quantization noise, it can be made inaudible (Le., the number of
bits producing the quantization noise can be selected to make it inaudible),
provided it is lower than the masking thresholds that are determined by
the strong signal.
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Critical bands are those frequency bands of the human ear which are such
that, if the masking and the masked signals are within such a band, then
the masking phenomenon is maximized. Hence division of the broadband
auditory spectra into critical bands, and carefully matching the signal and
quantization noise levels in each band, will result in errors that are
psycho-acoustically most benign.

Table 1 and Figure 3 show the critical band parameters; these are based on
reference [2J.

3. Masking Thresholds

The masked thresholds of hearing are made up of two components. The
first of them is the Absolute Threshold of Hearing (see Fig 4). This is
simply the lowest sound pressure level at which a pure sine wave is
audible as a function of frequency, in the absence of any other acoustic
stimuli. Suppose that, say, a narrowband noise ("masking signal") of 1 KHz
is present in the audio channel. This raises the threshold of hearing to
different shaped curves, that depend on the power of the masking signal.
A signal ("masked signal") below these will be made inaudible by the
presence of the masking signal. Such data is available in references 3 to 5.
Given the short-term spectral distribution of the input signal, and the
boundaries of the critical bands, the digital audio encoder computes the
masking thresholds in each band (see section 5). This information is used
to assign the bits for transmission.

4. Transformation of Input Time-Samples into the Frequency
Domain

General:

The input signal is time sampled into blocks and converted to a spectral
representation. This is accomplished via a "Modlfied Discrete Cosine
Transform" (MDCT) using the "Timt Domain Alias Cancellation" (TDAC)
method as described in reference 6. Figures 5 and 6 show the encoder and
decoder block diagrams.

One data block to be transformed contains 1024 time samples, i.e. at a
sampling frequency of 48 KHz this block contains the data of 21.33 ms of
sound. The consecutive data blocks overlap by 50% and therefore the true
"block pitch", Le. the time between consecutive transform operations,
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